
7 1D-A159 061 NOW COGNITIVE PROCESSES
AID PROGRAM UNDERSTANDING(U)

i/i
NRVRL POSTGRADUATE SCHOOL MONTEREY CA P R DORIN JUN 85

UNCLASSIFIED F/G 5/18 NL

EnEEEIhhhE~mhE
EEEEEEEEEEEII

ILI
- 9 L ai11 .

MICROCOPY RESOLUTION TEST CHART

NATIONAL UAN.AU Of STMNARDS 1963A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Itn

THESIS,
HOW COGNITIVE PROCESSES AID

PROGRAM UNDERSTANDING

by

DTIC
Paul Roderick DorinF' TO'f

June 1985 SEP 13 1985

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution is unlimited

2.

....... *.......

SECURITY CLASSIFICATION OF THIS PAGE (When Data 9Fered)REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

,. REPORT NUMBER j0 Gt 6 CES./d I NC S CATALOG NUMBER

4. TITLE (and Suboille) S. TYPE 6F REPORT II PERIOD COVERED

How Cognitive Processes Aid Program Master's Thesis
Understanding June 1985

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) S CONTRACT OR GRANT NUMBER(s)

,Paul Roderick Dorin

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AREA WORKUNITNUMBERS
Monterey, CA 93943

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985
Monterey, CA 93943 63.UMBEROFPAGES

14. MONITORING AGENCY NAME & ADDRESS(If dlfferent from Controllind Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. OECL ASSI FICATI ON/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited
icn For'

I I~S GRA&I

17. DISTRISUTION STATEMENT (of the abstra c entered in Block 30, If dillsi.n Iree Report) U:announced

D tict ion~z

IS. SUPPLEMENTARY NOTES

Av"Ilnb1ity Cedes
,Avail and/e*r

Dist Special

It. KEY WORDS (Continue on reverse side it necessary and identify by block number)j

cognitive, software understanding, program undeb..tan1 _..
chunking, slicing, hypothesis generation

COpy

LSPECTEU/

20. ABSTRACT (Continue on reverse side It necessary mid Identify by block number) a.t

A theoretical model of how an expert programmer goes about
understanding a piece of software is presented. This under-
standing plays an especially critical role in software
maintenance tasks. The model is based on three cognitive
processes: CHUNKING, SLICING, and HYPOTHESIS GENERATION and
VERIFICATION. These processes are used in conjunction with
a programmer's knowledge base and categories (Continued)

DD I.oA, 1473 EDITION OF INOV6 IS OBSOLETE
S 'N 0102- LF- 014- 6601 1 SECURITY CLASSIFICATION OF TNIS PAGE (Slon Date Entered)

, - .' " " " "."--- ". -,-

-. ? ' - . - C -

* SECURITY CLASSIFICATION OF THIS PAGE (fWM a EIatSSMr

ABSTRACT (Continued)

of information critical to program understanding are identified.
The model also takes advantage of certain characteristics of an
associative memory to describe, using a semantic net representa-
tion, the mechanisms behind these processes and the organization
of memory resulting from their use. The benefits of documenta-
tion and the use of commenting and mnemonics are described in
terms of the model and may be useful as a guide for incorpor-
ating these into the code.

U\

S N 0102- LF-014-6601

2
SECURITY CLASSIFICATIO10 OF TIS PACK(Whfl DS18 EtniffE)

-- w - - .. ' - --_ _ T '. ,

Approved fcr publlc release; distribution unlim~ited.

How Cognitive Processes Aid Prograw Understanding

by

Paul Roderick rorin
Lieutenant Conriander, United States Navy
B.S., United States Naval Acadeiry, 1976

Subtrittei in partial fulfillrent of the

requirements for the degree of

MASIR CiF SCIENCE IN COVPUTIR SCIINCE

fror tbe

NAVAL POSTGRADUATI SCHOOL
June 1iE5

Author: --

Paul Roderick DormE

*Approved by: ------

Gordon H.]adley 1- sis Advisor

--- IBruce J. MacLennan, -Second Reader

Bruce J. MacLennan, Chairnan
Departfrent of Corputer Science

Kneale T. Marshall, Lean .ration
and Policy Sclenc

?I

ABSTRACT

A tbeoretical model of how an experty rograrrer goes

abcut understanding a piece of software is presented. This

Lmnderstanding plays aL especially critical role in software

rraintenance tascs. The model is based on three ccgnitive

processes: CHUNKING, SLICING, and BIPTOTHISIS GENERATION and

VERIFICATION. These processes are used in conjunction with

a ;rcgrarrrer 's nowledge base and categories cf information

critical to prcgrar understanding are identified. The model

also taxes advantage of certain characteristics of an

associative rrerory to describe, using a semantic net

representation, the mechanisms behind these processes and

the organization of memory resulting trom their use. The

benefits of documentation and the use of commenting and

irreronics are described in terrs of the model and ray be

useful as a guide fcr inccrporating these into the code.

4

*6

%6

.66 6 6

•~* **6-* . ,-6,, ,-.. .- *-- ...-.-. . . .-.- ".- - . .-. ,. .- .* ' '. r-'. . ..6. -h- '. -"-" -" ;. -"

- - - - -- T- T- -. vp- '.=~ uv.~~ biN

TABLE OF CONTENTS

I. INTRCEUCTION ------------------------------------ 7

II. MEMCRY ANE RECALL-------------------------------- 11

A. SEMANTIC NETS ------------------------------ 12

B. SHORI TERM MEMORY --------------------------- 22

C. ICONG ER, MEMORY --------------------------- 23

D. EXTEIRNAL MEMORY ---------------------------- 23

III. KNCWIEEG. EASE ---------------------------------- 25

A. CCNTINTS ------------------------------------- 25

B. CRGANIZATICN ------------------------------- 30

IV. THE FRCCESSIS ----------------------------------- 33

A. CBUNKING ----------------------------------- 34

B. SLICING ------------------------------------ 37

C. BYPO'IBESIS PROCESS ------------------------- 40

V. SCENARIO -- 46

VI. RECC"MINIATIONS 57

I IST CF R111RINCES ---- - - - - - - - - - - - - - - - c-1

DISTRIBUTION LIST ------------------------------------- 3

U '
' '. --- .-----...-- --, .-- .-. ... ,::, .,,. °.,.--o-.- -. ',,,.. . .- -.--. , - -, , -.-, - .,. - ' ,' -i

I LIST OF JIGURES

1-A Slimple Semrantic Net------------------------------- 13

I -Inberitance in Ser~antic Nets------------------------ 14

3 -A ramre--16

4 - S erantic Net witfl Exceltion------------------------- 18

t-A Perspective Node Bundle ------------- U

E - errory Representation of Program --------- z

6

I. INTRODUCTION

Software maintenance now accounts for a large percentage

cf any software system's life-cycle cost. In view of this,

the software industry has shifted its empbasis with respect

tc program evaluaticn. No longer is software being judged

solely on tte merits of its applicatility to a given

prcblem. %hile not neglecting the importance of this, the

industry is considering factors wbich affect software

maintenance as well. One such factor is software

understandability [Ref. 1].

Gaining an understanding of unfamiliar programs is

frequently cited ty researchers as the first and often most

costly step in software maintenance. This understanding is

acbieved when the prograrrrer has 'learned' all that is

necessary tc ccmpetently carry out the required maintenance

task. Vaking software easier to understand would have

significant long term advantages restlting in reduced life-

cycle costs. Ihis study presents a theoretical model of

cognitive processes, based on cbserved programmer behavior,

wbicb aids in acqtiring this understanding. Further, the

study contends that the effectiveness of these processes is

aeleraent upon the extent of the programmer's knowledge

base.

ri

. - 12 io ° - ,-. .. - - -T , .. .- : -'..r - w.- ;-..r" ..- - i. - , -. - -- -. - -' -. -,. . ", - .
-

Most cognitive research analysing programmer behavior

sulports the iaea of levels of skill or ability, and

categorizes programmers as either novice, experienced, or

exrert. Pased on the proposed theoretical model, this

ability is defined ty how well the processes are developed

by the prcgrammer, and the extent of his cr her knowledge

base.

A novice has a relatively limited knowledge base.

Consequently, There is very little develcl rent of the

ccgnitive processes in evidence. He or she is considered

Iriarily a learner, using mainly unsopbisticated

techniques, such as inductive reasoning, to gain an

Lnderstanding of a progra.

An exlerienced prcgrammer has a fairly extensive

RncwledgE tasE. It includes information about ffcst of the

kncwledge domains necessary for program understanding. The

depth of Information in these domains is, however, uneven.

By this it is ireant that an experienced programmer tay know

algorithms to perform a certain function, for example to

sort numters, tut may find it difficult to adapt one of

these to sort words. Or, in the category cf programming

larguages, he or she may be familiar with the syntax and

semantics, but unsure of the underlying design and its

effects on a program.

r ' .d.'*- .--

Altbougb still learning, the primary errbasis at this

stage of a Ircgrammer's growth is the development of

cognitive processes whicb rake efficient use of this

kncwledge. At this stage, the programmer's performance is

good, though inconsistent, over a spectrum of less difficult

tasks. It does, however, degrade rapidly as task difficulty

increases, Indicative of only partially developed yrocesses

and the uneven knowledge base.

An expert, on the other hand, has acquired a broad

kncwledge base, including many specitics about programming

larguages and design, algorithms and data structures, task

domains, etc., as well as how they relate to one another.

Be or she has a consistently bigh level of performance as

well, proportional to task difficulty. This results from a

aeronstrated use of well developed cognitive processes.

These prccesses, which make use of the knowledge base,

in conjunction with external Information (program text,

docurentation, yrotle specifications, etc.), enhance the

expert's ability to gain an In-depth understanding of the

scftware Involved in a given maintenance task. It is this

deronstrated capability that distingvlsheS the expert from

either a ncvice or experienced programer.

AcKncwledging this, the choice for this study is to

rcdel an expert involved in the task of understanding an

Lrfamiiiar prcgra in order to perform some type of

raintenance. What these processes are, bow they are used,

............ ..,.

and what intcrraticr is contained in the knowledge base,

torr the rajcr portlons of this uodel. Realizing the

sutjective nature of the study, It is not a clair that this

is a definitive nrodel. It is, hcwever, reascnable and

relresentative of yrograruer bebavior deronstrated by

experts. In fact, this study contends that it is this very

behavior of uaIing efficient use of these processes which

determines exIErtise in this area.

t.

'I

"I

• I

I

II. VEVCRY and RECALL

We know ermirically that information is remembered--

stcred in the train--and can be recalled. Most evidence

also supports the hypothesis %bat huan rerrcry is at least

jartly associative [Ref. 2]. By this It is meant that I
facts, everts, concepts, and other types of inforration are

encoded and stored in rrerory as separate elements cr sets of

elements, connected to one another ty means of association.

Each elerent is stored only once, but can have any nurrber of

associations with other elements. Each elerent is also

directly accessible. One method of knowledge representation

which incorporates many of the concepts and properties

asscclated with this type cf memory is the semantic net.

As there is no evidence that strongly supports any

theory yet prclosed to ex1lain how memory and recall are

accor,!pislea, it should be noted that the model proposed

here uses semantic nets only as a tool. The ideas of

semantic nets will aid in explaining certain cognitive

prccesses. kbcwever, the model itself has teen developed

based on research data and its validity is independent of

this or any other theory regarding bow these rudimentary

ceretral functions, memory and recall, are accomplished.

rerrory is couronly thought ot as having two parts or

areas. ':bese are lateled long Term Memory and Short Term

ii .9

.

• . . , + .. + .- ' + " _ . + . ' °+ " + + : + "+ • " ".+ + ,. .L-+ +.+ +,•+ '..i -,.m.,: ..'', + ,,'.: .., s.. .'. +, , ! . , .+-. J,

III. KNOWIErGI EASE

Experts and novices differ in their abilities to process
large arotrts of meaningful Inforration A common
explanation of this difference is that experts have not
orly more Inforratior, they have the infcrmaticn better
organized...Paking their Lerception more efficient and
their recall performance rruch higher." [Ref. le]

The above quote empbasizes the importance of both the

conterts and the organization of the knowledge base.

Included in thE discussion presented here is the conviction

that the contents of rerory sorebow affect this

crganization. Also, based on data from several studies

referenced, ttis organization is dynamic and delendent on

context.

A. CONTENTS

Along witt tasIc knowledge, normally acquired through

grade school and college, the eipErt programmer knows a

ereet deal about five major categories of knowledge

assoc1etEd wilt Ircgrarrrrg. These are:

- AIGOPITHMS

- FRCGRAMrING LANGUAGES

- LOGIC

- DATA STRUCIURES

- PRCGRAr'tING rESIGN VETHODOIOGIFS

25

,te Is to cornj~nsate for thie limited capacity of short t e rn

reuary, ana ccrrplEffents long term n'eirory. All m'ethods used

t this ptrrcse are generally referred to as external

24

C. LONG TIRM VIMORY

When we learn or memorize something, the Information is

retained In long term rrerory. When some event causes the

recall of other events in the mind, the information comes

from long term memory. It Is ike reservoir of permanent

kncwledge used In cognition, and has stored in it everything

from the spatial model of the world to the motor and

perceptual skills used moment to moment (ef. U: pg. 56].

fut sirrly, It Is the knowledge base we operate from.

Unlike short term memory, the capacity of long term

rerory seems virtually unlimited. It receives and stores

Pew irforuation after processing in short term memory, and

this Information is directly accessible, once stored. Also,

research has shown that the knowledge in long term memory is

organized, and that the organization ray change almost

instantaneously, based cn the context of the information

teing processed in short term memory. As will be seen

later, this ability is significant In terms of the model,

and will be discussed in more detail as it relates to an

expert prcgrapmer's knowledge base.

r. EXTEPNAI MIMCRY

As an aid to information processing, external devices

such as pencil and paper, challboards, and tape recorders

are used to store information not in long term memory which

the programrer wants readily available for reference. This

23

.

Iii/111 r,|.t I ii I*i

E. SHORT TIRM MIMORT

Information enters the cognitive system through short

term memory. CURTIS [Ref. 6] quite adequately describes

this memcry as:

",a limited capacity workspace which holds and processes
those iters of information currently under cur attention."

This liited capacity was first quantified by PIIIER as 7+2

items [Ref. 7]. As will be seen later, an item is not

limited to a sintle memory elerEnt, and may be a 'chunk' of

indefinite size.

The Information which exists in short term memory is

transient and must be constantly used or 'rehearsed' to

prevent its rapid decay [Ref. E]. If the information is

gained via perceltion, this rehearsal will, after a time,

fix the information in long term memcry. Ihis is sometimes

called tte learning process. If, on the other band, the

informaticn beirg used was recalled from lcng term memory,

this rehearsal serves to reinforce it. This reinforcement

has a positive effect on the future recall of this

inform.ation and may cause it to migrate due to repetitive

use. Both rapidity of recall and information migration are

discussed later as they Iertain to the model.

22

The irplication of this analogy is that serrantic nets

are organized hierarchically. If this idea is accepted, it

fcllows bat in order to recall a certain liece of

information, several levels of tke hierarchical structure

rust be transited depending on the point of entry. This

walk through several levels necessarily has an adverse

effect on the s1eed of recall. Yet, in sore Instances,

infcrraticn which should be separated by several levels is

recalled faster than expected, irplying an alternative

method. To explain this, MINSKY Introduces a second notion

which allows for shortcuts tbrough several levels. The

areument Is that if a certain path is reinforced a nurber of

tires through use, a direct link is forred, analogous to

taking back roads to avcid lights and traffic.

These proertlies of serantic nets reflect those of an

asscclative merrcry and will be referred to extensively

thrcugbout the remainder of this paper. retails will be

added as necessary, to further explain behaviors, and this

shovld make these semantic net properties clearer. However,

it is lujortant for the reader to understand these before

proceeding.

21

One way tc represent this In a semantic net is to view

an object as a node bundle. This bundle consists of a

general object ncde as well as a number of nodes each

representirg a different perspective for that object. Linki

relevant to a particular context are associated with the

ccrrespcndlng perspective node.

With such a representation, shown for CAR in Figure 5,

slot valves are accessed either with or without a

perspective. Say, for example, tbe size of CAR is needed.

If CAR is with reference to a train the returned value would

be quite a bit different than if the inquiry were made for a

toy car. It no lerslective is given, the node bundle

collapses to the single CAP node used throughout this

exaulle. This causes all possible slot values to be

returned, each annotated with the associated perspective.

This notion of node bundles and object classification

leads to the idea of node clustering. Put simply, a node

cluster is a grouling in the net of objects and links

strongly associated with one or two specific objects of the

cluster. V'INSKY uses a geographic analogy tc illustrate the

idea [Ref. 5: pg. 11E]. He suggests picturing capitol

cities with strEets rowed by houses. These cities are

ccnrected via major throughfares to smaller suburban cities,

whicb are in turn connected to towns, etc. The analogy to

clusters, objects, and links is readily apparent.

20

• -. .- .- ,.'4. .:.- , , . ' ' -.,.*', .-.* , •7. - . .. ,. -..- - ,.2. .. , • ,. - - . . - .- ,., . ,. "

Another quality of an associative memory is the ability

to distinguisb the correct usage of an object, through

context or persective, when uany different ffeanings exist.

This aelendency on context rust also be represented in the

net. Work cited by COHEN supports the Idea that objects

each have many classifications, deterrined by context [Ref.

4: 1p. S-10]. This is tecause certain objects, when viewed

from different perslectives, take on new or different

qualities end attributes. A car, for exarple, can be looked

at as an aLtorrotile, or as a toy, or as the car of a train.

Obviously, each will have different attributes which are

identified through context. The result is one object with

three distirct purl3oses or aspects.

PROPULSION

PEERSPEC-

TRAINLSIO

Figure 5 - A Perspective Node Bundle

JT

PERPEC

AUO1V

PERPEC

whcse abstraction Is represented. These are truly default

values, whose]purpose is to fill a void until rore specific

:fora on Is. ottainea. This in:oration Is not an

excceptgion to tbE frare, but an expectedL pi ece of dlata

p~reviously ri5-sing or urkncwn.

AKORE ISAI- NIN

PROPULSION

ligre 4 - S rantic Net with Excertion

18

is.......................................

00~:

7,.-

specific color, CAI28 is incomplete. To remedy this, it

inherits the default value RID, until such titre as its own

color Is added to the knowledge base.

Exceptions and unusual circuvstances rust also be

accounted for. Using the CAP ezarple again, suppose CAR28

is an experimental model using compressed air for power.

The PROPULSION slot of the CAR frame is filled with the

value ENGINI, yet for CAR28, this would be incorrect. Prior

to knowing the method of PROPULSION, it is 'assured' that

CAR2E is powered by an engine. Once the rethod is known,

however, a PRCFULSION link is added to CAR2e, reflecting the

exception. Now, in trying to fill the PPCPULSICN slot for

CAF2e, the tirst value arrived at Is COMPRESSED-AIR, the

search stops, and the frame slot value becomes

inconsequential. Figure 4 is the representative net.

By this explanation, it may appear that all objects

nating up a frame are default values, and exceptions nothing

rore than specific slot values in lieu cf the default.

Each, however, is subtly different. A frame is made up of

attributes of an object. Some, such as engine, tire, or

seat, are common to the majority and as such are not

substitute values, used for lack of one more specific, but

the sare value shared arong many objects. An exception is

where particrlars of an cobject contradict any of these

shared values. Others, such as color, are conon attributes

with possibly different values for each Instance of the Item

1?

. -....

specific otjects- which are Instances or the abstraction.

These prcperties cr slot values are then inherited by the

rore specific instances, making the net less complicated.

Slots can te added to or, although less- likely,

suttracted frcff a frame. This would occur due to additional

in.1crrraticn teing inccrpcrated Into the net. Because or the

* dyrarrics of frarrec, they always represent the most current

abstracticn relative to the entire semantic net.

SEArS TIRAESam

CCIED slt nd i s ildbitte a E No

further sul~pose another object CAR2E is Introduced, but

witkiout a COLCR lint. Since all cars rust have some

16

When CAE27 is thought of, many facts about it core to

mind. It has an engine, tires, and seats. Also, it is a

vehicle used for transportation. roes this mean that, using

our representation, the object CAR27 should have direct

lirks to the otjects ENGINE, TIRE, SEAT, VEHICIE, and

TRANSPCRTATION? The answer is no. The way this information

is represented is thrcugb a property called inheritance, and

the use at frares.

Inheritance is an object's acquisition cf a slot value

by inheriting the value from another object through

association. ligure 2 is a semantic net showing one

representation of the abcve facts atout CAP2?. As can be

seen, CAR2? has no USED-FR link, but does have an IS-A link

to the uore abstract object, CAR. Howeer, It also has no

USED-FOR link, tut is associated to the cbject VEHICLE

tbrough an AKO - A Kind Cf - link. In tracing the net from

CAR27, VIHICLI is the first node reached which does have a

USID-F R slot value, TRANSPORTATICN. CAR27, therefore,

Inherits this value through its Indirect association with

VEHICLE.

Again looking at Figure 2, notice the object CAR is

lirked to some famillar c.aracteristics of a car via HAS

links. This area of the net, isolated In Figure 3, is

called a IRAPI. A frame is a set or cluster of objects

whict serve as slot values for an abstract or less specific

cbject. Its purpose is to group properties ccrmron to many

15

[*:.. .*~..:Q.1KK

W-: ~ ~ ~ -27' Wy

filled witb the value BLUE, the IS-A slot with the value

CAR, and the CWNID-BT slot with The values DCUG and JILL.

Ncte that the objects do nct bave to te tangible Iterrs, as

ill:,strated by the object PLUT. Fiptre 1 is, cf' course, a

rejresentatlon ci the knowledge that CAEZ? is a blue car

cwned by roug and Jill.

A

.S-

Ligre - Inheritance in Semantic Nets
BLU

i!:e C Iheiacei:SmnicNt

:.14

sr '-, .- '. _ . -' r . wX - -,. . . L - _ - . . w. * - *, ° •- .- * . - -. 7- -. - . -

between cbjects are called links. They are represented in

the figures by labeled circles and arrows respectively. A

third tern used ty WINSTON, which Is less standard, is the

slct. The slots of e ZOde are the aiffErert naued links

originating at the node. An exarple rigbt serve here to

bettEr describe the usp of these terrs.

It fiMgre 1, we have an exapple of a senantic net. The

five objects are CAR27 which Is a specific car, CAR which is

a general abstraction, DOUG and JILL which represent

sleciflc people, and the otject BIUE. There Is an OWNED-BT

lirk betwEen CAE27 and DCUG, and tEtween CAR27 end JILL.

There is an IS-A link between CAR2? and CAR, and there is a

CCICR linK between CAR27 and BLUE. CAR27 has fcur links

asscclated with it, tut only three slots. Ihe CCIOR slot is

CAR

IS-A

." igure 1 - A siirple serantic net

13R27

OWE-YONDB

7 -

rVeirory. This may not be a physical division, though some

researchers suggest that they're located in different areas

of the brain, tut rather one of co~nition. Some researchers

also include a third area, Working Memory. As the validity

of this additional division of memory Is not critical to the

model, the simpler idea is adcpted. A final form of

mremory', called Ixternal Perory, Is also used.

A. SEMANTIC NITS

A semantic net is a directed graph made up of nodes,

representing otjects, connected to one ancther via links.

These links indicate specific relationships or associations

between nodes. This rerresentation of knowledge is very

popular among members of the Artificial Intelligence

courLrnity. As there is no definitive set of characteristics

±cr a semantic net, tbcse relevant tc the icdel proposed

here are descritea. Much of this information is taken from

a text ty WINSION [Ref. 3], whose descripticn seems standard

when corpared to others in the literature. Properties have

been added cr altered, however, to aid in explaining certain

behaviors cf expert programmers. It is emphasized again

that the model is tased on observed tebavior, and in no way

depends on the validity cf this presentaticn cf semantic

nets, or any other knowledge representation.

Three terms ere used here to describe semantic nets.

The objects of the net are called nodes and the relations

12

.!'

The depth of knowledge in these categories allcws the expert

to quickly focus on the important aspects of new

informaticn. Using the processes covered in the next

-K :chapter, he or she can then encode this information and

relate it to what is already in long term memcry.

Experts are failliar with many algorithms which do

essentially the same jcb. Associated with each in the

knowledge base is a set of benefits, drawbacks,

applications, and, either implicitly or explicitly, a

ccplexity evaluation. Choosing integer sorting as a

representative task, there are several options: Merge Sort,

Comrarison Sort, Radix Sort, and Quick Sort to name a few.

Each is useful In acccmplishing the sort, however, each is

alsc especially suited to certain applications. Each also

has variations which are aplicatle to other types of sorts.

The expert is familiar with these, as well as the underlying

principles which differentiate them troir one another. This

allows him or ter to readily adapt these algorithms to meet

different needs, lexicograpbic sorting for instance.

like elgoritbms, data structures have many variations.

* The expert is familiar with these and with the underlying

* *principles behind their design as well. Ibis allows easy

modification to ireet new requirements and aids the expert in

reccirzing design flaws such as lack of flexibility or

expandability. The expert also has knowledge of algorithms

and can correlate a given data structure with an algoritbm

26

U.- - . - ': : . .-..'.,.-'. ,. -v - : . .

or group of algorithms for a specific application. The

ex;ert can alsc relate infcrmation on programming languages

to data structures, evaluating the relative ease with which

specific structures can be used and manipulated.

Programmiig languages are , to sone degree, familiar to

all programmers, whatever their skilll level. An expert,

hoaever, Is not only versed in the syntax and seantics of

several languages. Be or she is also familiar with the

aaantages and disadvantages of one language design, or

particular machine Implementation, over another. While the

choice of language is not an option for the ;rograirer

tasked with maintaining or debugging, the Farticular design

and implementation features play an impcrtant role when

jorting software fror one machine to another.

Knowledge of language design and implementation also

allows the expert to rake Judgements about software

efficiency and memory needs. This knowledge also allows for

Identifying potential trouble spots, usually avoiding

analysis of the entire prcgram. This is particularly

irrortant when evaluating poscitle effects of a

modification.

Inforoation about algorithrs also contributes to the

knowledge of languages. As most languages have built-in

furctions, the expert can evaluate the particular algorithms

used to i;leirent these. This evaluation adds to his or her

knowledge base of 1rograrring languages, aids in efficiency

2?

N'- I

-. -, T 7 7 7 Y 7

analyses, and is useful in predicting the accuracy of

results. Supported by this knowledge, an expert ray choose

to Substitute other routines using rore applicable

algorit&bs, for such things as Increased accuracy in

calculaticns, rcre efficient device drivers, cr faster

access to secondary storage. He or she right also choose to

replace programmed functions with ones tuilt into the

larguage, for the sare reasons.

lncwledge regarding logic is important In two ways.

First, it Enarles the expert to learn the specific

iurlementat ion of control staterents in a prograrirIing

language, adding this to his or her knowl-edge base. Second,

It aids in evaluating the flow of ccntrol in a given piece

of software. Bcth help in analysing the efficiency of the

software. Taking the following IF-THIN stateuent:

If 1 A > 10) OR (B < it) THIN C = D

the expert would know, or could test, whether or not the

second corparison is executed Independent of the result of

the first. laxing advantage of this type of information

could greatly impact the software's efficiency, saving money

and CPU tire.

Programming design methodolcgles are treated differently

f ror other categories In the knowledge tase. They can not

be defined In specific ter's, as we have done with the

others, and are seen as uore of a gestalt type of knowledge.

They nell the expert in analysing possible Side effects,

28

which Is, in part, a function of modUlarity. They play a

majcr role in processes to be presented later, such as

CHUNKING, SLICING, and HYFCTHISIZING.

Aside from knowledge of programming, the expert

maintainer must also know sometbing of the specific

application area. The level cr amount of Information

recessary Is dependent upon tbe modification to be

liirlemented. At the very least, however, the programrer

needs to know erough to be able to interpret the

docurentation and prcgram specifications in order to rake a

Judgement regarding potential side effects of the change.

This Information is either learned Information in long terr

rerory, which can be recalled for future tasks, transient

inforratior used and then forgotten, or Information kept as

reference using an external rremory.

The view of this study Is that what is contained in the

krcwledge base directly affects the programmer's ability to

Urderstand a given piece of software. Otviously, wbat the

prcgrammer knows at the cutset abcut the program's task

domain, and inforuation related to it, will impact on his or

her difficulty in gaining this understanding. Extending

this idea, a large disparity in the knowledge level

significantly affects the level of competence of the

prcgrairrrer and, consequently, the relative quality of the

work.

29

I%

The cognitive ;rocesses which interact with this

tncwledge base, in order for the prcgrammer tc achieve this

understanding, jerforr essentially three functions. Factual

infcrmaticn Is analysed ard added to the knowledge base, or

concepts and methodologies are atstracted from

docLrentatlon, or Information from one category Is

associated with that frou another (such as correlating a

data structLre with an algorithm). These functions serve to

integrate all irforration available to the programirer

a;licatle to the task.

This knowledge tase is not simply a collection of facts.

It is the organized accumulation of inforiation Into a

network reflecting semantic associations. This organization

is equally as importart as the information itself.

B. ORGANIZATION

Studies of recall show that people tend to organize

information into categories and groupings. Most items or

obje cts in rreory are rembers of more than one of these

categories, dependent on context. A piano Is a member of

the musical instrument category, and can be sub-categorizea

as a keyboard instrument in the context of musical

Instruments. It is also a member of the category which

Includes butch and dresser when viewed as a heavy piece of

furniture.

30

*,-.., ~

- -. - - - - -- _-

Grouping ty order is another otserved way m'em'ory has

been organized. A Ferson asked to list the ingredients of a

recipe, for example, will more than likely list them in

order of their use. When asked to list items necessary to

equip a home, hcusewives listed these Items either by

*'" category--kitcten utersils, turnitbre, window coverings--or

by considering necessary items room by room [Ref. 4: pp. 8-

The evidence prcvided by these studies support the

byjothesis that memory is organized dynarricelly, based on

the context ct the stirulus. It also irrylies that this

organization mekes use of information clustering. What is

meant here is that information elements related by context

'igrate' toward certain key elements or toward one another.

In either case, this clustering strengthens associations in

context between these inforration elements, enhancing

recall. As explained In a later chapter, this enhancement

aids cognition ty vaking pertinent infcrrration readily

available to shcrt term memcry, while 'blocking' irrelevant

associations irvolving these same elerents.

Because these grcupings are determined by context, the

aFcLnt of information contained in the knowledge base

associated with each element has a bearing on their

categorization. The greater tte amount of associated

knowledge, the mcre refined the groupings can be. As more

kncwledge is gained and this refinement ccntinues, new

S i.'.-. 31

clusters are formed to replace those less refined, and the

association between any two becomes more specific. This, in

turn, results In a reorganization of rerory.

The studies cited here Involve simple element lists.

however, this idea is easily extended to more complex

information elements, such as concerts, Ideas, and

abstractions, which are themselves clusters of information.

The Implication throughout this chapter Is that different

knowledge categories or domains are used best when

integrated. How the contents and organization of merory

relates specifically to the expert, and how this integration
ir

Is accomplished, is addressed In tte following chapter.

32

V'-

7 T

IV. THE PROCESSES

SCRNFIEFRMAN and MAYER conjecture that, to facilitate

;rogram comprehension:

the ;rograrwer, with the aid of his or her syntactic
knowledge of the language, constructs a multileveled
internal Semantic structure to represent the program."
[Ref. 11]

The present study has identified, In the context of software

raintenance, three major coplementary cognitive processes,

suppcrted by certain lesser ones, used to accomplish this.

Further, it is the tenet of the study that the entire

prcgram need not te represented In memory, but only that

rart whict is of interest as deleririned by the programrer.

The descriltions of these processes have been formulated

from observed Irograurer behavior. The ideas presented are

extensions cf theories based on empirical data resulting

frcp limited testing. Introduction and subsequent treatment

Cf these ideas in the literature has been, in many cases,

artfully vague, with researchers characteristically relying

on intuitive understanding through example. Therefore,

although an attefpt is rade here to Pore clearly define

these processes, the next chapter presents a scenario

exemplifying the application of each.

:33
%S.-. -. -.

• " ' " i '" c_.' ,- ' ' : '. -. Z/ / ' ," '/''".. . . ."."."..,.".-..".

A. CHUNKING

The cognitive process known as 'chunKing' is a learned

sill, enabling a prcgrarmer to encode Inforration in such a

way that a grou; of inforration elerents can te represented

and yrocessed as a single element in short ter memory

[Ref. 7]. As rentioned previously, short ter Femory is

where Information processing occurs, and is characterized as

beving a limited capacity. This grouping or organizing of

inforration allows prograrvers to operate cn 'chunks' of

associated Infcrration rather than single iteps. This

translates to giving the Irogramrrer a troader perspective of

the task.

Chunking is a very dynaric process, in ter's of the

knowledge base. A chunk is created when an association is

fcrrred between an encoded item in short term memory and its

corresponding Information cluster in long teru erory. This

cluster is the result of a reorganization of remory based on

the context cf the stiulus which initiated the cbunxing

Irccess. It can be added to or deleted from, based on the

results of partial corpletion of the task for which it was

created, or as informatIcn is learned, regarding the task,

thrcugh other processes.

Ubunking associations may also be formed between the

enccded item and Information in external merories. These

associations ray access Information directly, or right

simpiy guide the programmer to a reference in which the

, -. . T ' i . - .- '. .° -- --. .- --. . . - . . i -i ""- --..- ii'- i - . - I ' ." . -' .-. " .'-4

necessary Inflormation is contained. In either case, they

allow the rrograirirer the use of transient or taski specific

information. At the s ame t ime, they alleviate the

I rograrrer of the burden of having to learn the informration

so it rrigtt bE added to the cluster, or of having to store

it In short terrr memrory before It Is needed.

The arrount Cf Informaetion represented by a chunk is

artitrary IRet. 12]. Its size Is dependent on how much

associated inforrration is contained in the Xrovledge base,

and to what extent external memrories are used. The results

of research by MIII.IR anid others indicate that the numrber of

items Used or stored In short term memory is relatively

ccnstant. Frrm this It can be concltded that the number of

chunks wbicb can be processed, is indejendent Cf chunk size

IRef. 13: pg. 177, Per. 9: p~e. 44]. Thus, chunking

effectively Increases the capacity of short term ueuory as

relates to information processing.

Besides having the ability to handle more information In

short term rrercry, chunking also allows the ;rogrammer quick

access tc specific Informration which Is part of the chunk.

The reason Is that chunks, relresenting Information

clu'sters, enhance recall of that inforrraticn. All kcnowledge

associated witt the chunk has etffectively been accessed, and

caL be thcugtt cf as staged ror recall. TIhis can best be

exrlained by tsing a semrartic net representation.

.-

When the chunk is created, a reorganization of the

kncwledge base takes place, and inforraticn migrates,

forming a high dersity rode cluster. Again, the size of

this cluster depends on the extent of the Knowledge base.

This density decreases the length o nodal links, resulting

in a shorter walk from the initial access node or capital of

the cluster to the desired information element. The

asscclaticn between the encoded item and the knowledge base

is one example of the 'shortcut' described earlier, and

lirks short teir memory to the capital of the cluster.

The perspectivE has also been identified and

associations tetween codes not in context have been

deelrpbasizea. All the Information represented by %be chunk

is ncw just beyond the prcgrammer's consciousness waiting to

te recalled. The encoded item can therefore be processed,

representing a group of knowledge, with specific items

associated witb the cbunk rapidly recalled for use when

recessary.

Some researchers, such as KINTSCH, suggest that cbunxs,

cnce formed, can be permanently stcred in lcng term memory
[Ref. 1": p. 175]. This idea is inconsi' tent with the

presentation here, and research for this study has uncovered

ro data to su.jcrt the hypothesis. KINTSCH himself

differentiates tetween what a chunx is in short and long

term remcry. His Idea of store chunks closely ccrresponds

to the earlier Iresentaticn of inforration clustering. As

36

it is the contention of this study that a chunk exists only

sc long as It is under the programmer's attention, this

rotion of permanently stored cbunks is disregarded.

B. SliCING

Expert programmers break large unfamiliar programs into

smaller coherent pieces in order to gain an understanding of

their function and/or design. Often, these pieces are

determined by the original writers of the code. They are

identified as tlocks of code in the form of subroutines,

;rccedures, ftnctions, and the like. Identification is

Lsuallj exjlIcIt and the rieces are written into the source

as contiguous lines of program text. Cne can think of these

as functicnal pieces of the program.

Also, experts routinely partition programs in ways that

do riot conform to textual, modular, or functional structure,

permitting multiple views of tte same code. Unlike

furcticnal pieces, which have a one-to-one correspondence

tetwen function and purpose of cocE lines, this type of

division allous lines of ccde to be viewed from different

jersfectivs. This associates a single lire of code with

more than one purpose. The construction of these views is

what WIISIR, who first proposed the idea, calls 'Program

Slicing'. The process is used to strip from a program

statements which do not influence a specific behavior or

sifclrg criterion. The result is an abstract representation

of the jrcgrau as viewed from the perspective of the

specific tehavicr. This group of statements, usually

associated with a single variable, is called a program

slice [Ref. 14: pg. 43Y, Ref. 1t: pg. 446].

Slicing is Important in maintenance becEuse typically

only a subset of the prcgrarr's behaviors is being improved

cr replacea. Fy eliminating non-influential code, the

ralrtalner's jot is made simpler. He or she can then deal

wlit a much smaller 'prograr'. Wbile this yrogra ay not

te syntactically correct, It Is semantically correct for the

tebavior of interest.

Also, the entire piece of software need not be sliced.

If a poirt in the flow of control can be identified which

ourds the slicing criterion, then only that part of the

code still tc be executed need be sliced. This further

rejuces ttf prcgraTrcr's tasX.

Two k.j areas of the knowledge base are especially

'nfltential In dEterining the effectiveness of a

ircgrarmer's slicing ability. Prograrring lcgic allows the

rairteirEr to easily identify bounds of a specific behavior.

He or she can, uitb an extensive knowledge base, trace

tnrcugh the prcgrar's flow of ccntrol easily and accurately,

reccenizlng pertlcular lcgic features of the language.

Iis(, the expert's in-aeptb kncwl dge of the yrograrring

iareuaee Pives him cr he- the ability to readily identify

lirEs nf coCe which impect the slicing criterion. For

'" E

example, familiarity with hcw data is passed and whether or

nct it is alterea ty coae or simply used and returned

witbout cange (ie. Pass by Reference, Value, or Name) could

greatly affect tte size Cf' the slicE.

Tbe extent to which experts eulloy slicing seers to

aepend on the jrcgrar. Testing by WEISER shows that factors

influencing the use cf slicing are ccde size, structure, and

ease of understanding [Ref. It: pp. 4E-461]. This suggests

that slicing is found ty experts tc te most effective on

pocrly structurea ;rogrars, and less so or. those which are

well designed and raxe use of modules, comments, en1

rneronics. F±fEctiveness here is a relative measure of the

arcunt of worx eliminated End/or inforretion gained by

slicing.

The wcrA tby WEISER also derrcnstrates that expert

prcgrarrers independently aevelop their cwn style of

sicing. This does not preclude teaching its principles tc

less able prcgrarrrrers, but points out the process-

dependence cn the kncwledge and experience cf the

Indiviaual. It also poirts to the fact that it Is P

subjective Ircce.s and cannot presently te Implemented

fully. lor ttc interested reader, howevEr, WEISER does

describe algorithms for apprexirating slices and discusses

the erfectiveness cf twc autcmatic slicing tccls [Ref. 14].

39 .

- - W , - * - - - . - . - . - -, - -7 -- -: - .1 - -"-:"- -.-.- -- - - * ..r,

that if a nurroer is corpared to anything but another nurrber,

a 'ype risratcb" occurs. Therefore, STUDGRADE I] ffust be

a nurber. This verifies the first slot of the frae.

The RIPIAI-UNII block of the original slice is

recognized as a looping construct. This, coupled wl ihe

fact that one variable inside the loop is used as an index,

allows the prcgrarmer to chunk the block as "BUITfl AN

ARRAY". This chunk is associated with the grade input and,

based on this context, the inforration cluster associated

with the grade data structure Is processed. It is fouad to

include the class of array data structures, and so tte

second slot and its ccrresponding hypothesis is also

verified. With all code now mapped, the entire input

representation is considered verified, as all higher level

hypctheses inherit the verification. Alsc, with reference

to the last verification, it should be noted that the

informaticn cluster and hypothesis were further refined to

reflect that a particular class, the array class, of list

structures was used.

If a contradiction does occur in verification, a walk up

the subtree takes Ilace. Each hypothesis is checked until

one is found which the irfcrvation does not contradict. A

new hypothesis is forred at the next lower level as a

refineirent of this hypothesis, and all hypotheses below this

level are reevaluated based on the new context. A simrilar

1rocess takes place if inforration, other than that

5 3

",*- • • ' - ' " • ' . ' . - -- L - . .- - - ., ,- , L - . . .

Assume the following is the result of the slicing

Irccess:

READ STUENT

REPEAT
=+i

REAr STUD_-GRArF[I] j
UNTIL STU_ GRADE[I] = ;99

The programmer now atterr;ts to verify tne bylctheses against

the coCe. be READ STUDENT line stands alone as

verification of the hypothesis that each Student is input.

To verify the two bylotbeses associated with grades is

slightly rcre corplicated. The REED STU _GRAE[I] statement

would be adequate to verify the byrotbesis that student

grades were inrut. Hcwever, it fails to ccnfirm that It is

a numerical representation. To conf1rr this, if no

declaration statement exists, the programmer must analyse

the behavior of the variable. The code resulting fror the

slicing process based on input is itself sliced, this time

cn STUD GRADE[I]. The UNTIL STUD GPArI(I]= 99 statement

becomes tte only other line in the slice.

The ;rcgramer recognizes the UNTIL statement as a

coupare and branch operation and notes that the variable is

compared to a number. His or ter knowledge of the

prcgramming language is extensive Enough to realize that 999

rust be a number and nct a string. Also, he or she knows

of the hypotheses forrred. Howe'er, this understanding Is

not appreciably dirinisbed unless the erroneous bylcthesis

is located in a to; level of the hierarchy.

Continuing to focus on in1ut, in order to verify this

re1resentation the lrograrrFr neeas to slice the source code

using input behavior as the criterion. Then, each line of

code in the slice rrust te irapped to a. leaf-frarrre or slot of

the input subtree. Note that these leaf-frarres or slots do

rot all hae to be on the sarre level.

TAKES INPUT

PROCESSES AND

UTPUTS RESULTS

INPUT DATA PROGRAM
SSOCIATED WITH AVERAGES
STUDENT GRADES GRADES

STUDENT STUDENT

ID GRADES
DATA

LIST INTEGER
CLASSCLASS

D.S• D.S.

ligure f - remcry Representation of Program (Input)

... . .1. . .

inforiration in the yrograr, otberwise it is arbitrary. for

exarple, the ordering cf algoritbrrs would te irportant in

understanding the prograrr, whereas the ordering of data

classes in the freres created fror the input bypotbeses, for

example the one representing the hypothesis that both grades

era Student laentification are input, is not irrortent for

jrograr understanding. If subsequent analysis reveals that

a specific ordering is recessOry, the frare would be

reorganized to reflect this, because of the new ccntext.

The value of each slot is an infcrraticr cluster

representing a knowledge dorrain, as frarres representing

hypctheses use classes of infcrrraticn and not specific

elerents. The cluster is formed rased on the context

defined by the hypothesis wbicb the frare or slot

represents. The Initial hypothesis' INPUT slot has, as a

value, a cluster representing all data types or classes that

the prograrrer associates with grades. When the subsequent

hypotheses are forred, defiring the input as STUDENT IDFNT

and GRADI, ttis cluster is reorganized into a two slot

frarre, each representing a sub-cluster of the criginal. The

value of the STUDENT IDENT slot becoires all possible

representations by wbich students can be identified, and the

value of the GRATE slot becores the cluster of all ;ossible

classes cf grade representation contained in the knowledge

tase. Any eletrents or nodes of the original cluster not

asscciated with either of these new clusters Is not

49

'visible' fror' this fratre down, siirilar to the Idea of

scoping in sorre yrograirping languages. So on one level,

there is a single cluster representing the hypothesis as a

grouping ot all possitle input data classes, while on

another level, this sa'e information, or a subset of it, is

viewed as two separate clusters. bis reorganization of

information occurs because cf the change in ccntext when the

sutsidlary hypotheses are introduced.

The programmer has now Increased his or her

understanding of tbe Ircgrar. In addition to what was

expected based on the criginal hypothesis, the Irogramirer

now also expects that:

- grades are nurerical

- each student's set of grades is processed separately

- the grades are initially input into a list structure

- the grades are surrrred and averaged

- each student is identified with his or her grades

- a tra;ping takes place frof averase to letter

- student Ir and corresponding letter grade is stored

figure E shows this representation fccusing c the input

suttree of the byrcthesis hierarchy. Each level can be

thought of as a leVEl of understanding. It should be noted

that, at this point, no verification has taken ilace and

this level of rnderstanding is contingent on the ccrrectness

5V.-"

domrain, an outlut dorain, and a domain of algoritbirs on

which the processing of the data is assured based. While

this Is certainly not specific enough a representation of

the software to enable the ;rogramuer to do any useful work,

a level of understanding has been achieved.

further reading of the docurrentation reveals that each

student's grades will be read in, surred, and the average

ccnverted to a letter grade and stored. This Infcrmation

suggests many, more specific, data and algorithbic classes,

and several levels of hypctheses are formulated. Presuring

that, at this point, the programmer tegins to develop

hypotheses in a quasi depth-first order, focusing on input,

one hypothesis would be that grades are read in as numbers.

Another might te that each student's identification is input

in conjunction with his or her grades. The grade datu

hypothesis is then refined, fcrming a lower level hypothesis

that grades will be represented as intEgers atea handled as a

list. Note that at this point, the prcrarrrer is not

interested in wbat representation is used for student

Identification, possibly because hypotheses about the

prccessing of the data suggest that the Identificaticn data

will be used but not altered, so specific typing will not be

necessary.

In memory, each hypothesis is represented s a frame

with ordered slots. This ordering, if relevant, is based on

the elpectEd or confirmed ordering of the representative

.,,,..\..,... ,;..~., j w%o.' .. %,,. '....'. . . ,.. /.. ... ,...........a..

A. A WAIK-IHBCUGH

Suppose a prograrrmer is given a program that be or she

has never seen te'cre and asked to perforir scue rodification

to it. further suppose that to do this rodification, an

overall understanding of the program is necessary. He or

she most lixely begins by lccing at the docurrentatIon.

After reading a small part of the docurentation, perhaps

a phrase cr sentence, the programmer forms a hypcthesis. Fe

or she tas assertained that the program averages student

grades. This defines a context, and a recrganizatlcn cf

ueiory takes place. This reoreanization results ir a large

infcrmaticn cluster, fcrrring a frame. It ccntains slots

such as INPUT IAIA, OUTPUT DATA, and PFRCESSIS.

The value of the INPUT DATA slot, based on the

Frograrrirer's knowledge of bow school grades are arrived at,

is a cluster of possible types or classes of data. These

would inclUde, at this level, every type of data in his or

her knowidEge tase that the prograrmver associates with

school grades, as well as all pcssible data structures

associated with tbea. The valtes ot the other slots would

be of a similar nature.

So by simply reading a single phrase, 'corrputes student

grade averages', the prograrrrer has constructed an internal

relresentation of the program. He or she expects that it

takes some Input data, processes this data, and outputs the

result. In addition, be or she has identified an input

47

V. SCENARIO

A scenario is now presented to help exerplify bow each

prccess apliles to the task of prograrr corrrebeosicn. It is

aeant to give the reaaer an intuitive Vnderstading of

application and effects, as well as the trechanisrs

underlying ttese ccgnitive processes. The reader should

also gain an understanding of tbe interrelaticnsbils between

the processes, the krowledge case, and Inforpation relating

specifically to the prcgran. It is the ccllective use of

these wbict gives the expert his or her superior skills.

Fcr simplicity, a structured prcgram is assuired as well as

an AIGCL-lixE yrograrrrirg largage. Agair, serantic nets

are used to represent memcry organization.

The prografr used for this scenario will te one which

corputes averages cf student grades and outputs a letter

grade for each. It is a fairly structured Irograrr with

adequate documentation and uses rrnemonics but nc ccmrrents in

the source coaE.

14

46

w . J WW., V -, r- nrr . ,'9r,' 'CZ.'9S ,W, . . W- 4 .-- . , - -o4. . .--,- - . -, ' ''' ' ' ' - -. . - . -

For verificaticn, tbe hypotheses forming the leaves cf

the tree are teStEd egainst the code. Two conditions are

necessary for verification cf the hierarchy. First, ccde

corresponding to the hypotbesis being verified fust be in

the prcgrar. Second, all code fust te acccunted for by one

of the hypotheses. If either of these conditicrs fails, the

structure is reorganized to retlect this and aLy new

infcrmaticn gained frcm it.

155

L:L

Each Introduction of new inforreaticn causes a

reorganization of memory due to the change In context. This

reorganization would rake use of confirmed information, old

or new, and ray cause a change in default cr normal valves

not yet verified. If this change in context cccurs at a low

level of the .ierarchy, the programmer's jerspective will

change only slightly. If, however, the change affects slot

values in the tot levels, reorganization of a large subtree

rri t occur, giving the ;rcgrarrrer a significantly different

view of the rrctlem. The view could also change if the

rrcgrarrrer chooses to shift his or her attention from the

cverall view, tc a mcre refined hypcthesis, fccusing then cn

a subtree of the hierarchy. This would have the effect of

emrphasizing the details cortained in this subtree and

"chunking' tte rerainder. The hypothesis hierarchy is

therefore dynamic, changing with every shift In ccntext.

Verificaticn can take place 2t any time. It usually

occurs when the programuer reaches a level Cf urderstanding

abcut the tebavior cf the prcgram that he cr she wishes tc

corfirr. This can tE because the propramrrer has reacbea a

level of understanding telleved adequate fcr the task be or

she needs to rerfor, cr it ight simply te to validate

certain typotteses tefore continuing. One reason for

InterreediatE validation is that it lessens the effects of

discovering an Invalid hylothesis or contradicticn.

44

organization %ould greatly reduce the amount of searching

necessary to identify this class of situations.

The benefits of these analogies, when they exist, are

taken advantage of in generating hypotheses. As stated

earlier, the prcgrammer rakes maximum use of his or her

knowledge tase. This is accomplisbed by relying on

previously learned information regarding a general solution

already familiar to him or her. In this case, the specifics

of the software solution need only te learned if and when

they are needed and differ from thcse of the general one.

This is a much reduced task, relative to learning the entire

sclution (or prcgram) when no such analogies exist in the

knowledge base.

Returning to the discussion of hypotheses, the

hierarchical structure can be explained easily by once again

using a semantic net representation. Facb bypothesis can be

thought of as a frame. Each slot value of a frame would

either te an Information element or a frame itself,

obvicusly more speulfic than the one whose slot It fills.

Initially, all frames (hypotheses) would contain either

default or normal values. As more Informaticn is processed

regarding tte software, these values would te confirmed or

replaced. These new values could te frames, representing

still more specific hypotheses. Ncrmal values, when

cortradicted, are replaced by exceptions slecific to the

prcbierr at band.

4Z

.

posslble, the supposed Inforrraticn. Orly when a

contradiction occurs is this inforrratIon replaced.

Obviously, this Irccess is dependent on the prcgrarrrrer's

ha'ving sen siilar 1robleTs before. It seeITs aplropriate,

therefore, to digress fcr a moment to address this idea of

saneness or analogy.

As was mentioned before, Inforration in reory is

crganized into groups based on certain jarapeters or

corstraints. bcw, in fact, this grouping is accomplished,

is still not understood, however it does occur. As

associations are virtually limitless, it seerrs icgical to

assurme that groupings are as well. Sirilar ;roblems could

therefore be grouped and an abstract set of circumstances

forred to Encorrass dominant cbarectEristics of the group.

This idea is similar to that of a frame. Then, as prcblems

are introduced, they are corrpared against these dominant

characteristics. If the characteristics rratch, the lroblerr

is considered analogous.

As this reatcbing process seerr s a rrarroth task as

presented, consider the reducticn of work if these sets of

circumstances were grouped by single characteristics,

incorporating confidence levels, or another retbod of

rating, to distirpuish cst from least dominant in the set.

This would cause stronger and weaker associations, leading

to the most Ircoable set first, analcgcus tc an electron

following the ath of least resistance. This tyre of

42

.-.

. " " . . . , ' ° ° '. .' ." ., . ". " " " " " .' . w , . -, . ' ' ' . . ; ' . -'
•

" " '. ' " . , ,' % " 4'," o *" " - '

is that, at any level cf understandine, the programmer

should be able to Froduce a functionally equivalent program

in any language that he or she is faillar with.

The title of the ;rograr, or 2 succinct preser.tation of

the task for which the software was written, usually

suggests enough information for the programmter to geerate a

bypothesis about the general flow of the yrogram. This

hypothesis would incorporate expected input and output types

with a correslonaing class or group of possible data

structures. It would also have classes of algorithms and

abstract logical constructs in its make-up, with the

o gro ra rirer essentially forring an overview of bow the

program might work. Note that these are classes and not

specific elements.

As rrcre information about the program is processed,

these ideas are refined by generating other, more specific

hypotheses based on new, more focused expectations. As

uentioned, a hierarchy would begin to fcrr, each level

further refining the ex1ectaticns used to generate the

hypotheses above. As each new level is forred, it

- incorporates more information about the program. The result

is more factual information in support of these hypotheses,

and less suppcsition based on previous knowledge cf similar

tasks. This is not to say that knowledge tase Inforrration

is replaced ty that newly learned atcut the task. Pather,

facts abcut the probler are used to verify, whenever

41

-- -.r ~ ~ w -2 -r w r '. -y * r d v ; r .~

C. HYPOTHESIS FRCCISS

The third, and perhaps most powerful, process used by

experts is hypothesis generation, refinement, and

verification. It is a tcp-down process which allows for

maximum utilization cf the programmer's knowledge base, the

overall depth of which determines the effectiveness of the

process. It involves the generation, based on irforration

in the knowledge base, and subsequent refinement and

verification of hypotheses regarding the prcgrairtrer's

sulpositlons about how the code was designed and written.

As more and more information atout the software is

Irccessed, a hierarchy of these hypotheses is ccnstructed.

This hierarchy is built quasi deltb-first. This is

because a prcgrammer has a tendency to focus on cne area,

fcrring a cascade of refinerent hypotheses through several

levels befcre shifting his cr her attention. The programmer

does, hcwever, remain cognizant of the other areas.

Therefore, infcrration crcountered while refining the

current area cf interest is often used to fcrr hypotheses

relating to these cther areas as well.

The hierarchical structure can be thought of as defining

levels of understanding. The greater the depth, the mcre

the programmer has refined his or her understanding of the

scftware. By building this hierarchy, the programrer is

creating an internal representation cf the program.

independent of any programming language. The goal or ideal

40

. - .-i ..

.- ,..,... ... -... .. 2.'', ."..-....-\. .'

expected, is found and needs to be included in the

representation. Obviously, the higher up the tree the

change takes 1lace, the greater the memory reorganization

necessary.

Up to this point, the prcgrarrmer has teen forring the

Ircgrair rerresentation using a top-down apiroach. However,

there are times when a bottoir-up inductive approach is also

necessary. Usually this approach is taken when a

programmer's knowledge base, regarding the task domain, is

incorplete, or when atypical algorithmrs are used. Here is

where cbunkine plays a major role. The purpose of this next

exarple is to demonstrate this role, and not to describe, in

* -idetail the indvctive process.

Suppose the yrograrmer is confronted with a module or

tlccl of code that he or she has forrred nc hypothesis about

at a specific level. Using trhe grade averaging example,

assure that the Ircgrarrer has no knowledge cf how averages

are computed, and that the algorithm used is unkncwn to him

or her. The prograrrer now tries to understand the

algcrItbh by inductively reasoning about the code based on

his or her knowledge of lower level functions performed

within it.

At the lowest level, this is accomplishied by locking at

individual lines of code and assifning ther interpretations

[Ref. 12]. However, because the expert's knowledge base

cortains inforrration about constructs and their uses,

54

*.-"...

, .. , , ., . , . .. - - -,S., ',. '- . .'-.. -.- % :-. '

certain cf these lines are recognized as code included in

the performance of a specific function. PPCCKS cells these

* beacons'.

The block of code is for a standard averaging routine:

SUP =

WHILE SU1_GGArt[I] < bW9 rO

SUM = SUM + SIUD GRADEjI]

INL.yH III

AVERAGI = SUr / I

The programmer analysing this code reccgnizes the first two

lines as assignment statements, and interprets thei

individually. He or she now looks at the WHIIE line and

recognizes it as a looping construct and teecon for several

rurctional ises. The next assienrrent statement has the

assignment variatle on both sides of the equal sign, and so

is interpreted as changing the value of SUV by performlng

sore operation on' it, rather than simply assigning it a

value. Cnce the value added is recognized as an Indexed

value, the prcgrammer chunks the loop. He or she has

incwledge base information which shows that an Indexed

variable added to that tye of assignrent staterrent

indicates an array summation process. So thcse four lines

are chunked as "SUM STUDENT GRADYS". Also, the first two

lires are now chunked as "VARIABLY INITIALIZATION" based on

55

A 4

".' "'- ;'"' "C "T"" " ."-,".. "' "* " " ." : .? " " ." '' """ "
" ". "" " r , " '" "' " '

7

this new Inforration. The last line is interlreted as an

assignment staterrent wbich computes the grade average ty

dividing the sur of the grades by the nuber of grades

suwired.

By chunkin@, the programrrer hes taken a riece of code,

which could te considered a single chunk which "COMPUTES

GRADE AVERAGIS", and forred a representation through

inductive reasoning. The original seven lines of code can

ncw be Interpreted as:

- Initialize variables

- Suu grades

- tivide su' ty nurber of grades suvmed

This representation can stay in short ter' rerory to be used

fcr the present task, being linked to the representation of

the rest of the prcgrar in long teri' remory, and/or can be

used to learn an averaging algorittm which could then be

used for other tasks as well. And, once learned, the

relresentation could be added to tbat In long ter' remory.

5'.

-'5

" ' .55 5

VI. RECO!MWENDATONS

This Study has presented a theoretical rodtel or simple

ccgnitive processes developed and used by prcgramrners.

Further, tbe study has attempted to demonstrate how the

expert, by using these processes, gains an in-depth

understanding of complex programs. It is unrealistic, at

present, to -ully zest these ideas because mrethodologies

have not been developed in the behavioral sciences to do

this. Also, the requisite size and corplexity of the

programs, and the time involved, are ;rohbitive. Research

and the results of limrited. testing on small scale programs,

hcwever, do suggest certain design techniques, and coding

and documentation mrethods wtich directly influence the

effectiveness of these prccesses.

One such area is code structure, which should be

designed so as to suggest chunks to anyone attempting to

comprehend it [Ref. 13: pg. 175]. luncticnal elements of

the code should be implemrented as contiguous tlocks of text

whenever possible. Arbitrary GCI1O's and forward and

tackward JUt'Ps should be avoided. Control flow statements

shculd be used to direct flow from the exit pcint of one

chunk tO 0 te entry point of others. All these

considerations enhance the chunking prccess by raking blocks

U57

*.**..****.........." .~.-::

I

of code recognizable as single functions. This results in

raking it easier to use the text of the rrograir as an

external remory fcr those chunks.

Tests conducted by WFISER also indicated that code

structure influences slicing [Ref. iE]. It was found that a

much higher degree of slicing, among 21 expert programmers,

took place when analysing a poorly structured ;rograr with

indiscriminate use of GOTO's and non-rnemcnic variable names

than when analysing Ircgrars which rake use of rodular

designs, mnemcnics, and ccnments. The value of proper use

of rneronics and corrents to the slicing prccess Is that

they serve tc explicitly show data flow and to group

associated staterents and functions. This lessens the need

for programmers to ferret out this information. One can

conclude that less effort was required to achieve an equal

level of understanding when good programming techniques were

ep;loyed. The use of these maximtizes the effectiveness of

slicing while rinrizing the effort necessary.

Comments and rneironics are also helpful to the chunking

process. A well placed coirrent, s;ecifying the purpose of a

block of code, and perhaps the data elements affected,

explicitly identifies a functional chunK. This chunk could

then easily be encoded based on the ccent alone,

eliminating the need for code analysis at that point.

Meaningful mnemonics would give sore insight into their

purpose and thus both aid the recognition ard chunking of

- . . . -- '9

couplex data structures and help to fornt correct

hypotheses. These could then be Incorporated into still

larger cbunXs, allowing the enj date elerents which Frake up

the structure to be processed as a single Fleient in errory.

Program documentation can be, itself, a wealth of

information for the expert Frograrrrer. A natural language

explanation of the apprcach taken in originally designing

the software facilitates the formulation of a fairly

accurate hypothesis regarding its irplementation. Citing

explicitly the algorithrs erployed enables verification of

certain byrotbeses without extensive code analysis. Using

this information, the Faintainer can more easily focus on

certain functions or behaviors of the code without having to

first analyse It in depth to determine the specifics of its

I irlerren ta tion. If exceptions to standard algorithmic

coding are noted, it saves the programer from baving to

determine why It was coded in such a way. Also, if subtle

effects of the code are included in the documentation, along

with certain potentials for side effects, it would reduce

the testing necessary when a modification is oade.

One final area which positively affects the use of these

processes is standardization on all levels. Use of a

standard design methodology would allow prcgrammers to learn

bow to best chunk and slice certain representative software

fcrmats. 'Beacons' identifying certain fLucticnal areas

'.Sri

could be learned and used effectively. Automatic tools to

aid these processes could also be develoled with less

difficulty.

On a more specific level, standardizaticn cf algorithms,

and their corresponding constructs would greatly sirplify

the task of comprehension. Eiperts would te able to

incorporate tbese into their knowldege bases, learning tber

frcm both the functional and the behavioral pcints of view.

Also, coding terplates could be learned and associated with

these, aiding recognition of code Itself.

Sirrilar ideas have teen used in most other engineering

fields with great success. While software engineering is

not, in many respects, as rigorous as these other

disciplines, standards could be made flexible enough so as

not to Inhibit ;rogress. Software reuseatility Is the

motivation for recently generatea interest in this area.

the ;rogravrIn@ language ADA is the first stel in an atterpt

at achieving sore of this standardization, and its use in

conjunction with these rocesses nay serve to verify their

validity.

0,

LIST CF REFERINCIS

1. Brooks, F., "Using a Behavioral Theory of Program
Coirrebension in Software Inpineering, PrpQeg 1
t gr r International Conference on §oE af
Engieering, pp. 16-21, IEEE Computer Scciety Press,

2. Wickelgren, W. A., Learning and Mecry, ;F. 11-23,
Prentice Ball, 1977.

3. WInston, P. H., Artificial Intelljg g , 2nd ed., pp.
253-291, Addison-Wesley Publishng_ Coirany, 1984.

4. Cohen, G., It@e f~9ygbqqg 91 ggepil9p pp. 8-11,
Academic Press, 1977.

E. Haugeland, J., Mipd P@§sgp, pp. 118-120, VIT Press,
19E1.

6. Curtis, I., "ifteen Years of Psycholcgy In Software
Engineering: Individual Differences and Cognitive
Science," Proceedjg of the 7th International
Conference on Software Fng1;eerinL, -p. 97-106, TE
Coirputer Society Press, 1924.

7. Miller, G. A., "The Magical Nurber Seven, Plus or Minus
Two: Sore .imits on our Capacity for Processing
Information, The Ps bcgc Review, v. 63, pp. E1-
V7, Marcb 1956.

8. Tracz, b. J., "Computer Programming and the Human
Tbougbi FrocesS," §oftwaref Z Preoglce prq Expe1renc,
'. 9, pp. 127-137, 1979.

..oer, G. E., an.. otbrs, Uapdbook of Lea..n..g Ap.
Cogniti~e Processes, v. 1, Lawrence Erlbaur Associates,
1975.

10. Mclelthen, K. B.,.. Reitman, J. S., Fueter, B. H., and
Hirtle, S. C., Knowledge Crganizaticn and Skill
Differences in Ccfrputer Prcgramirers, Cognitive

, Ps..... . , v. 13, pl. 307-325, 1921.

~ - -- S -... - - -

11. Sbnelderrren, B., ard Mayer, R., Syutact c/Semant c

Interacticns in Prcgrarer Betavior: A Podel and "
Experiimental Results, International Journal of
Comrter and Informatcn Scienc g, v. E, pp. 219-23E,
1979.

12. Brooks, R., "Toward a Theory of the Ccgnitive Processes
in Corrquter Programirrng, International Jourral of Man-
?Macbine Studies, v. 9, pp. 737-751, 19, --.

13. Iintscb, W., learning, temoryj §d Concepl ,
Processes, 1p. 175-181, John Wiley & Sons, 1970.

14. Weiser, M., proceeings of the lIfth International
Conference on Software Engineerlng, pp. 439-449, IEEE
Coirputer Society Press, 168i.

15. Weiser, V., "Programmers Use Slices When Debugging,"
Corrnicaticns of t1e Ai, v. 2E, pp. 446-452, July
19E2.

62

,:. .. 1. '--? . .. ,.. .'5] . .- . ". . "- - ' .. ' .'. . . . ? .- .-- . -.. '.. .C ''.C'-' , " '-I" , -]. ' :-: -??- ., ,

TIL P1TIBUTIQ LIST

No. Copies
1. Defence Technicel Infor'ation Center 2

Cafreron Station
Alexandria, Virginia 22314-614t

:. Litrary, Code 0142 2
Naval Postgraduate Schcol
Monterey, California 93143-5100

3. Professor G. B. Bradley 4
Code E2Bz
Naval Postgraauate School
Monterey, California 93943-5100

4. Departrent Chairran, Code 52 2
Departfrent of Coirputer Science
Naval Postgraduate School
Monterey, California S3s43-5100

5. Lieutenant Corrrander Paul R. rorin 4
133431 la Venta Drive
Poway, California 92064

e. Doris rorin
70 Troumaka Street
Tors River, New Jersey OE757

7. Mr. Paul torin 1
70 Trotraka Street
Toms River, New Jersey e6757

8. Lieutenant Coniander Douglas L. Robbins
Surf Way Apt. 231

Monterey, California w3b40

63

*' ."-. /..-,,--. -..". , .-' :....... ..2.'-''../., . ,. '. .. .e ,L , g . , . ,. . ,, , :' - ' ' - ' . ''.""""""• -. " " '. ," " ."• . " ".- . 'e ''

FILMED

10-85

DTIC

